4 research outputs found

    Collected results on semigroups, graphs and codes

    Get PDF
    In this thesis we present a compendium of _ve works where discrete mathematics play a key role. The _rst three works describe di_erent developments and applications of the semigroup theory while the other two have more independent topics. First we present a result on semigroups and code e_ciency, where we introduce our results on the so-called Geil-Matsumoto bound and Lewittes' bound for algebraic geometry codes. Following that, we work on semigroup ideals and their relation with the Feng-Rao numbers; those numbers, in turn, are used to describe the Hamming weights which are used in a broad spectrum of applications, i.e. the wire-tap channel of type II or in the t-resilient functions used in cryptography. The third work presented describes the non-homogeneous patterns for semigroups, explains three di_erent scenarios where these patterns arise and gives some results on their admissibility. The last two works are not as related as the _rst three but still use discrete mathematics. One of them is a work on the applications of coding theory to _ngerprinting, where we give results on the traitor tracing problem and we bound the number of colluders in a colluder set trying to hack a _ngerprinting mark made with a Reed-Solomon code. And _nally in the last work we present our results on scientometrics and graphs, modeling the scienti_c community as a cocitation graph, where nodes represent authors and two nodes are connected if there is a paper citing both authors simultaneously. We use it to present three new indices to evaluate an author's impact in the community

    Architecture for the heterogeneous federation of future internet experimentation facilities

    Get PDF
    International audienceInternet systems are currently too complex to be entirely designed in advance and therefore must be thoroughly evaluated in realistic environments. Experimentally driven research is at the heart of Future Internet Research and Experiment (FIRE) facilities, which target various experimenter profiles, ranging from core Internet communities and sensor networks to clouds and web services. Such facilities exist in relative isolation to the detriment of innovative research ideas that could arise from the mixture of their diverse technologies and resources, and their combined power. Internet research communities can benefit from gaining access to a larger number and variety of resources through a federation of these facilities. To this end, we present an architecture to support such a federation of Future Internet experimentation facilities, based on use cases and requirements from infrastructure owners, as well as services and first line support communities
    corecore